Experimental validation of convection-diffusion discretisation scheme employed for computational modelling of biological mass transport

نویسندگان

  • Gráinne T Carroll
  • Paul D Devereux
  • David N Ku
  • Timothy M McGloughlin
  • Michael T Walsh
چکیده

BACKGROUND The finite volume solver Fluent (Lebanon, NH, USA) is a computational fluid dynamics software employed to analyse biological mass-transport in the vasculature. A principal consideration for computational modelling of blood-side mass-transport is convection-diffusion discretisation scheme selection. Due to numerous discretisation schemes available when developing a mass-transport numerical model, the results obtained should either be validated against benchmark theoretical solutions or experimentally obtained results. METHODS An idealised aneurysm model was selected for the experimental and computational mass-transport analysis of species concentration due to its well-defined recirculation region within the aneurysmal sac, allowing species concentration to vary slowly with time. The experimental results were obtained from fluid samples extracted from a glass aneurysm model, using the direct spectrophometric concentration measurement technique. The computational analysis was conducted using the four convection-diffusion discretisation schemes available to the Fluent user, including the First-Order Upwind, the Power Law, the Second-Order Upwind and the Quadratic Upstream Interpolation for Convective Kinetics (QUICK) schemes. The fluid has a diffusivity of 3.125 x 10-10 m2/s in water, resulting in a Peclet number of 2,560,000, indicating strongly convection-dominated flow. RESULTS The discretisation scheme applied to the solution of the convection-diffusion equation, for blood-side mass-transport within the vasculature, has a significant influence on the resultant species concentration field. The First-Order Upwind and the Power Law schemes produce similar results. The Second-Order Upwind and QUICK schemes also correlate well but differ considerably from the concentration contour plots of the First-Order Upwind and Power Law schemes. The computational results were then compared to the experimental findings. An average error of 140% and 116% was demonstrated between the experimental results and those obtained from the First-Order Upwind and Power Law schemes, respectively. However, both the Second-Order upwind and QUICK schemes accurately predict species concentration under high Peclet number, convection-dominated flow conditions. CONCLUSION Convection-diffusion discretisation scheme selection has a strong influence on resultant species concentration fields, as determined by CFD. Furthermore, either the Second-Order or QUICK discretisation schemes should be implemented when numerically modelling convection-dominated mass-transport conditions. Finally, care should be taken not to utilize computationally inexpensive discretisation schemes at the cost of accuracy in resultant species concentration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Study of Entropy Generation for Natural Convection in Cylindrical Cavities

In this paper, an enhanced computational code was developed using finite-volume method for solving the incompressible natural convection flow within the cylindrical cavities. Grids were generated by an easy method with a view to computer program providing. An explicit integration algorithm was applied to find the steady state condition. Also instead of the conventional algorithms of SIMPLE, SIM...

متن کامل

Applying a Modified Two-Fluid Model to Numerical Simulation of Two-Phase Flow in the Membrane Chlor-Alkali Cells

In this study, gas evolution in a vertical electrochemical cell is investigated numerically with a modified two-fluid model. The mathematical model involves solution of separate transport equation for the gas and liquid phases with an allowance to inter-phase transfer of mass and momentum. The governing equations are discreted via the finite volume technique and then are solved by ...

متن کامل

A weighted mass explicit scheme for convection-diffusion equations

An explicit scheme based on a weighted mass matrix, for solving time-dependent convection-diffusion problems was recently proposed by the author and collaborators. Convenient bounds for the time step, in terms of both the method’s weights and the mesh step size, ensure its stability in space and time, for piecewise linear finite element discretisations in any space dimension. In this work we st...

متن کامل

Experimental observations and numerical modelling of diffusion-driven crystallisation processes.

This paper reports experimental results and modelling on the crystallisation processes induced by counter diffusion method of a precipitant agent in a lysozyme protein solution. Comparison between experimental observations and numerical simulations in the presence of convection and sedimentation and without them (suppressed using gel) provides a validation of the model. Different values of the ...

متن کامل

Numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type

In this paper, we have proposed a numerical method for singularly perturbed  fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and  finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided  in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2010